\(\int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\) [540]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 125 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {i \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}-\frac {i \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}-\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

[Out]

I*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(3/2)/d-I*arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2)
)/(a+I*b)^(3/2)/d-2*a^2/b/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3623, 3620, 3618, 65, 214} \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=-\frac {2 a^2}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {i \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{3/2}}-\frac {i \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{3/2}} \]

[In]

Int[Tan[c + d*x]^2/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(I*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(3/2)*d) - (I*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/
Sqrt[a + I*b]])/((a + I*b)^(3/2)*d) - (2*a^2)/(b*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3623

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(b*c - a*d)^2*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Ta
n[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; FreeQ
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{a^2+b^2} \\ & = -\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {\int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (a-i b)}-\frac {\int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (a+i b)} \\ & = -\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (i a-b) d}+\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (i a+b) d} \\ & = -\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a-i b) b d}+\frac {\text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a+i b) b d} \\ & = \frac {i \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}-\frac {i \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}-\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.17 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.95 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {b (-i a+b) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tan (c+d x)}{a-i b}\right )-(a-i b) \left (2 a+2 i b-i b \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tan (c+d x)}{a+i b}\right )\right )}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

[In]

Integrate[Tan[c + d*x]^2/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(b*((-I)*a + b)*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a - I*b)] - (a - I*b)*(2*a + (2*I)*b - I
*b*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a + I*b)]))/(b*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]
)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1936\) vs. \(2(105)=210\).

Time = 0.08 (sec) , antiderivative size = 1937, normalized size of antiderivative = 15.50

method result size
derivativedivides \(\text {Expression too large to display}\) \(1937\)
default \(\text {Expression too large to display}\) \(1937\)

[In]

int(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2*a^2/b/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)+1/4/d/b/(a^2+b^2)^2*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2
*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3+1/4/d*b/(a^2+b^2)^2*ln((a+b*tan(d*
x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/4/
d/b/(a^2+b^2)^(5/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2
*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4+1/4/d*b^3/(a^2+b^2)^(5/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1
/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+4/d*b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a
)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3+3/d
*b^3/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1
/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)
^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3-1/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b
^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(
1/2))*a-1/d*b/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c
))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/d/b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a
^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^5-1/d*b^3/(a^2+b^2)^2/(2*(
a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2
*a)^(1/2))-1/4/d/b/(a^2+b^2)^2*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2
)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/4/d*b/(a^2+b^2)^2*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^
2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/4/d/b/(a^2+b^2)^(5/2)*ln(b*tan(d*x+
c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4-1
/4/d*b^3/(a^2+b^2)^(5/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2
))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-4/d*b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c)
)^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3-3/d*b^3/(a^2+b^2)^(5/2)/(2*(a^2+b^2)
^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2
))*a+1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2
*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3+1/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a
+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+1/d*b/(a^2+b^2)^2/(2*(a^2
+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)
^(1/2))*a^2-1/d/b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^
(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^5+1/d*b^3/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(
(2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1971 vs. \(2 (99) = 198\).

Time = 0.27 (sec) , antiderivative size = 1971, normalized size of antiderivative = 15.77 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/2*(4*sqrt(b*tan(d*x + c) + a)*a^2 - ((a^2*b^2 + b^4)*d*tan(d*x + c) + (a^3*b + a*b^3)*d)*sqrt(-((a^6 + 3*a^
4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6
 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + a^3 - 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))*log(-(3*a
^2*b - b^3)*sqrt(b*tan(d*x + c) + a) + ((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 +
 b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + 2*(3*a^3*b^2 - a
*b^4)*d)*sqrt(-((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^
2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + a^3 - 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2
*b^4 + b^6)*d^2))) + ((a^2*b^2 + b^4)*d*tan(d*x + c) + (a^3*b + a*b^3)*d)*sqrt(-((a^6 + 3*a^4*b^2 + 3*a^2*b^4
+ b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*
a^2*b^10 + b^12)*d^4)) + a^3 - 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))*log(-(3*a^2*b - b^3)*sqrt(b
*tan(d*x + c) + a) - ((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a
^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + 2*(3*a^3*b^2 - a*b^4)*d)*sqrt(-((a
^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 2
0*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + a^3 - 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2)))
 + ((a^2*b^2 + b^4)*d*tan(d*x + c) + (a^3*b + a*b^3)*d)*sqrt(((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9
*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^
4)) - a^3 + 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))*log(-(3*a^2*b - b^3)*sqrt(b*tan(d*x + c) + a)
+ ((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^
4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - 2*(3*a^3*b^2 - a*b^4)*d)*sqrt(((a^6 + 3*a^4*b^2 + 3*a
^2*b^4 + b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b
^8 + 6*a^2*b^10 + b^12)*d^4)) - a^3 + 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))) - ((a^2*b^2 + b^4)*
d*tan(d*x + c) + (a^3*b + a*b^3)*d)*sqrt(((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4
 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - a^3 + 3*a*b^2)
/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))*log(-(3*a^2*b - b^3)*sqrt(b*tan(d*x + c) + a) - ((a^8 + 2*a^6*b^2
- 2*a^2*b^6 - b^8)*d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*
a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - 2*(3*a^3*b^2 - a*b^4)*d)*sqrt(((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sq
rt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^
12)*d^4)) - a^3 + 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))))/((a^2*b^2 + b^4)*d*tan(d*x + c) + (a^3
*b + a*b^3)*d)

Sympy [F]

\[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\tan ^{2}{\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(tan(d*x+c)**2/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)**2/(a + b*tan(c + d*x))**(3/2), x)

Maxima [F]

\[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {\tan \left (d x + c\right )^{2}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(tan(d*x + c)^2/(b*tan(d*x + c) + a)^(3/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 6.66 (sec) , antiderivative size = 2239, normalized size of antiderivative = 17.91 \[ \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

int(tan(c + d*x)^2/(a + b*tan(c + d*x))^(3/2),x)

[Out]

(log(((((-1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(64*a*b^11*d^4 - ((-1/(a^3*d^2 + b^3*d^
2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a
^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5))/2 + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256
*a^7*b^5*d^4 + 64*a^9*b^3*d^4))/2 + (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3
- 16*a^8*b^2*d^3))*(-1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2))/2 - 8*b^9*d^2 - 24*a^2*b^7*
d^2 - 24*a^4*b^5*d^2 - 8*a^6*b^3*d^2)*(-1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2))/2 - log(
((-1/(4*(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i)))^(1/2)*(64*a*b^11*d^4 + (-1/(4*(a^3*d^2 + b^3*d^2
*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a
^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256*a^
7*b^5*d^4 + 64*a^9*b^3*d^4) - (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a
^8*b^2*d^3))*(-1/(4*(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i)))^(1/2) - 8*b^9*d^2 - 24*a^2*b^7*d^2 -
 24*a^4*b^5*d^2 - 8*a^6*b^3*d^2)*(-1/(4*(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i)))^(1/2) - atan((((
-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(64*a*b^11*d^4 + (-1i/(4*(a^3*d^2*1i + b^3*
d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a
^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256*a^
7*b^5*d^4 + 64*a^9*b^3*d^4) - (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a
^8*b^2*d^3))*(-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*1i - ((-1i/(4*(a^3*d^2*1i + b
^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(64*a*b^11*d^4 - (-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3
*a^2*b*d^2)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b
^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256*a^7*b^5*d^4 + 64*a^9*b^3
*d^4) + (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a^8*b^2*d^3))*(-1i/(4*(
a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*1i)/(16*b^9*d^2 - ((-1i/(4*(a^3*d^2*1i + b^3*d^2 -
a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(64*a*b^11*d^4 - (-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^
2)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 +
320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256*a^7*b^5*d^4 + 64*a^9*b^3*d^4) + (
a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a^8*b^2*d^3))*(-1i/(4*(a^3*d^2*1
i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2) - ((-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^
2)))^(1/2)*(64*a*b^11*d^4 + (-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(a + b*tan(c +
 d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11
*b^2*d^5) + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256*a^7*b^5*d^4 + 64*a^9*b^3*d^4) - (a + b*tan(c + d*x))^(1/2)
*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a^8*b^2*d^3))*(-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3
i - 3*a^2*b*d^2)))^(1/2) + 48*a^2*b^7*d^2 + 48*a^4*b^5*d^2 + 16*a^6*b^3*d^2))*(-1i/(4*(a^3*d^2*1i + b^3*d^2 -
a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*2i - (2*a^2)/(b*d*(a^2 + b^2)*(a + b*tan(c + d*x))^(1/2))